PYSCF-ITA
The [information-theoretic quantities](../developer/ita.ipynb) developed by Shubin Liu et al. is becoming more and more popular in predicting and understanding many chemical relevant problems, such as reactivity, regioselectivity, aromaticity, pKa and so on. See Acta Phys. -Chim. Sin., 32, 98 (2016) and WIREs Comput Mol Sci., e1461 (2019) for reviews.
PYSCF-ITA is a Python extension library of PyScf for post-processing molecular quantum chemistry calculations. So, like any other library, it can be directly imported and used in Python scripts and codes. All the information-theoretic quantities can be easily calculated by pyscf-ita, which can be freely download at https://zhaoyilin.github.io/pyscf-ita/. This document will briefly illustrate how to calculate various information-theoretic and related quantities.
Contents
- 1. Atoms-in-Molecules
- 2. Information-Theoretic Approach
- 3. API
- 3.1. pyscf.ita.promolecule module
- 3.2. pyscf.ita.aim module
- 3.3. pyscf.ita.dens module
- 3.4. pyscf.ita.ked module
- 3.5. pyscf.ita.itad module
ItaDensity
ItaDensity.G1()
ItaDensity.G2()
ItaDensity.G3()
ItaDensity.GBP_entropy()
ItaDensity.alternative_fisher_information()
ItaDensity.fisher_information()
ItaDensity.relative_alternative_fisher_information()
ItaDensity.relative_fisher_information()
ItaDensity.relative_rho_power()
ItaDensity.relative_shannon_entropy()
ItaDensity.rho_power()
ItaDensity.shannon_entropy()
- 3.6. pyscf.ita.ita module
ITA
ITA.G1()
ITA.G2()
ITA.G3()
ITA.GBP_entropy()
ITA.alternative_fisher_information()
ITA.batch_compute()
ITA.build()
ITA.fisher_information()
ITA.onicescu_information()
ITA.relative_alternative_fisher_information()
ITA.relative_fisher_information()
ITA.relative_onicescu_information()
ITA.relative_renyi_entropy()
ITA.relative_shannon_entropy()
ITA.relative_tsallis_entropy()
ITA.renyi_entropy()
ITA.rho_power()
ITA.shannon_entropy()
ITA.tsallis_entropy()
- 3.7. pyscf.ita.script module